A Stable High-Order Method for Two-Dimensional Bounded-Obstacle Scattering
نویسندگان
چکیده
A stable and high-order method for solving the Helmholtz equation on a twodimensional domain exterior to a bounded obstacle is developed in this paper. The method is based on a boundary perturbation technique (“transformed field expansions”) coupled with a wellconditioned high-order spectral-Galerkin solver. The method is further enhanced with numerical analytic continuation, implemented via Padé approximation. Ample numerical results are presented to show the accuracy, stability, and versatility of the proposed method.
منابع مشابه
A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering
An efficient and high-order algorithm for three-dimensional bounded obstacle scattering is developed. The method is a non-trivial extension of recent work of the authors for two-dimensional bounded obstacle scattering, and is based on a boundary perturbation technique coupled to a well-conditioned high-order spectral-Galerkin solver. This boundary perturbation approach is justified by rigorous ...
متن کاملA New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics
A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملSea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison
L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006